Things to remember.....
- A fraction is a number representing a part of a whole. The whole may be a single object or a group of objects.
- When expressing a situation of counting parts to write a fraction, it must be ensured that all parts are equal.
- In 5/7 , 5 is called the numerator and 7 is called the denominator.
- Fractions can be shown on a number line. Every fraction has a point associated with it on the number line.
- In a proper fraction, the numerator is less than the denominator. The fractions, where the numerator is greater than the denominator are called improper fractions. An improper fraction can be written as a combination of a whole and a part, and such fraction then called mixed fractions.
- Each proper or improper fraction has many equivalent fractions. To find an equivalent fraction of a given fraction, we may multiply or divide both the numerator and the denominator of the given fraction by the same number.
- A fraction is said to be in the simplest (or lowest) form if its numerator and the denominator have no common factor except 1.
Answer:
2 | 7 | 2×5 | 1×3 | 14+3 | 17 | ||||||
a. | + | = | + | = | = | ||||||
3 | 15 | 3×5 | 7×3 | 21 | 21 |
3 | 7 | 3×3 | 7×2 | 9+14 | 23 | ||||||
b. | + | = | + | = | = | ||||||
10 | 15 | 10×3 | 15×2 | 30 | 30 |
4 | 2 | 4×7 | 2×9 | 28+18 | 46 | ||||||
c. | + | = | + | = | = | ||||||
9 | 7 | 3×7 | 7×9 | 63 | 63 |
5 | 1 | 5×3 | 1×7 | 15+7 | 22 | ||||||
d. | + | = | + | = | = | ||||||
7 | 3 | 7×3 | 3×7 | 21 | 2 |
2 | 1 | 2×6 | 1×6 | 12+5 | 17 | ||||||
e. | + | = | + | = | = | ||||||
5 | 6 | 5×6 | 6×5 | 30 | 30 |
4 | 2 | 4×3 | 2×5 | 12+10 | 22 | ||||||
f. | + | = | + | = | = | ||||||
5 | 3 | 5×3 | 3×5 | 15 | 15 |
3 | 1 | 3×3 | 1×4 | 9-4 | 5 | ||||||
g. | + | = | + | = | = | ||||||
4 | 3 | 4×3 | 3×4 | 12 | 12 |
5 | 1 | 5×3 | 1×6 | 15-6 | 5 | ||||||
h. | + | = | + | = | = | ||||||
6 | 3 | 6×3 | 3×6 | 18 | 18 |
2 | 3 | 1 | 2×4 | 3×3 | 1×6 | 8+9+6 | 23 | ||||||||
i. | + | + | = | + | = | = | = | ||||||||
3 | 4 | 2 | 3×4 | 4×3 | 2×6 | 12 | 12 |
2 | 1 | 1 | 1×3 | 1×2 | 1×1 | 3+2+1 | 6 | ||||||||||
j. | + | + | = | + | = | = | = | = | 1 | ||||||||
3 | 3 | 2 | 2×3 | 3×2 | 6 | 6 | 6 |
1 | 2 | 1 | 2 | 1+2 | 4+3 | 7 | |||||||||||||||
k. | 1 | + | 3 | = | 1+3 | +( | + | ) | = | 4 | +( | )= | = ( | ) | |||||||
3 | 3 | 3 | 3 | 3 | 3 | 3 |
2 | 1 | 14 | 13 | 14×4 | 13×3 | 56+39 | 95 | |||||||||||
l. | 4 | + | 3 | = | + | = | + | = | = | |||||||||
3 | 4 | 3 | 4 | 3×4 | 4×3 | 12 | 12 |
16 | 7 | 16×5 | 7×5 | 80-35 | 45÷5 | 9 | |||||||
m. | + | = | + | = | = | = | |||||||
5 | 5 | 5×5 | 5×5 | 25 | 25÷5 | 5 |
4 | 1 | 4×2 | 1×2 | 8-3 | 5 | ||||||
n. | + | = | + | = | = | ||||||
3 | 2 | 3×2 | 3×2 | 6 | 6 |
2 | |||||||||||||
The metre length of ribbon, Sarita bought = | |||||||||||||
5 | |||||||||||||
3 | |||||||||||||
The metre length of ribbon lalita bought = | |||||||||||||
4 | |||||||||||||
2 | 3 | 2×4 | 3×5 | 8 | 15 | 13 | |||||||
Total length of ribbon they bought = | + | = | + | = | + | = | |||||||
5 | 4 | 5×4 | 4×5 | 20 | 20 | 20 |
1 | |||||||||||||||||
The piece of cake, Naina given | = 1 | ||||||||||||||||
2 | |||||||||||||||||
1 | |||||||||||||||||
The piece of cake, Najma given | = 1 | ||||||||||||||||
3 | |||||||||||||||||
1 | 1 | 3 | 4 | 3×3 | 4×2 | 17 | 5 | ||||||||||
The total amount of cake was given to both of them = | 1 | + | 1 | = | + | = | + | = | = 2 | ||||||||
2 | 3 | 2 | 3 | 2×3 | 3×2 | 6 | 6 |
Answer:
5. Complete the addition-subtraction box.
Answer:
6. A piece of wire 7/8 metre long broke into two pieces. One piece was 1/4 metre long. How long is the other piece? Answer:
7 | ||||||||||||||||
The length of wire | = | m | ||||||||||||||
8 | ||||||||||||||||
1 | ||||||||||||||||
The lenth of one broken piece of wire | = | m | ||||||||||||||
4 | ||||||||||||||||
7 | 1 | 7×1 | 1×2 | 7 | 2 | 7-2 | 5 | |||||||||
The length of other wire | = | - | = | - | = | - | = | = | ||||||||
8 | 4 | 8×1 | 4×2 | 8 | 8 | 8 | 8 |
9 | |||||||||||||||||
Distance of school from Nadinis house | = | km | |||||||||||||||
10 | |||||||||||||||||
1 | |||||||||||||||||
Distance travelled by bus | = | km | |||||||||||||||
2 | |||||||||||||||||
9 | 1 | 9×1 | 1×5 | 9 | 5 | 4 | 2 | ||||||||||
Distance she walked = | - | = | - | = | - | = | = | km | |||||||||
10 | 2 | 10 | 10 | 10 | 10 | 10 | 5 |
Fraction of Asha's shelf filled with books |
|
|||||||||||||||||||||||||||||||||||||||||
Fraction of Samual shelf filled with books |
|
|||||||||||||||||||||||||||||||||||||||||
For Comparing we have to first find LCM of denominator of given fractions i.e.6, 5, which is 30 , using LCM we can find equivalent fractions of 5/6 and 2/5 with same denominator 30, which can compared easily | ||||||||||||||||||||||||||||||||||||||||||
|
1 | 11 | ||||||||||
Time taken by jaidev to walk across the ground= | 2 | = | min | ||||||||
5 | 5 | ||||||||||
7 | |||||||||||
Time taken by Rahul to walk across the ground= | min | ||||||||||
4 | |||||||||||
11 | 7 | 11×4 | 7×5 | 44 | 35 | ||||||
Comparing fraction of time for both | , | :: | , | :: | , | ||||||
5 | 4 | 5×4 | 4×5 | 20 | 20 | ||||||
35 | 44 | ||||||||||
Clearly | < | ||||||||||
20 | 20 | ||||||||||
44 | 35 | 44-35 | 9 | ||||||||
∴Rahul takes less time by fraction = | = | = | = | min | |||||||
20 | 20 | 20 | 20 |
No comments:
Post a Comment